
22 CROSSTALK The Journal of Defense Software Engineering November 2004

Three Essential Tools for Stable Development©

Three basic practices make the difference between a software project that succeeds and one that fails. These practices support
and reinforce each other; when done properly, they form an interlocking safety net to help ensure success and prevent common
project disasters. However, few development teams in the United States use these proven techniques, and even fewer use them
correctly.

Andy Hunt and Dave Thomas
The Pragmatic Programmers, LLC

Many software projects that fail seem
to fail for very similar reasons. After

observing – and helping – many of these
ailing projects over the past couple of
decades, it seems clear to us that a majori-
ty of common problems can be traced
back to a lack of three very basic practices.
Fortunately, these three practices are easy
and relatively inexpensive to adopt. It does
not require a large-scale, expensive, or
bureaucratic effort; with just these prac-
tices in place, your team can work at top
speed with increased parallelism. You will
never lose precious work, and you will
know immediately when the development
starts to veer off-track in time to correct it,
cheaply and easily.

The three basic practices that we have
identified as being the most crucial are ver-
sion control, unit testing, and automation.
Version control is an obvious best practice,
yet nearly 40 percent of software projects
in the United States do not use any form
of version control for their source code
files [1]. The motto of these shops seems
to be last one in wins. That is, they will use a
shared drive of some sort and hope that
no one overwrites their changes as the
software evolves. Hope is a pretty poor
methodology, and these teams regularly
lose precious work. Developers begin to
fear making any changes at all, in case they
accidentally make the system worse. Of
course, this fear becomes a self-fulfilling
prophecy as necessary changes are neglect-
ed and the system begins to degrade.

Unit testing is a coding technique for
programmers so they can verify that the
code they just wrote actually does some-
thing akin to their intent. It may or may
not fulfill the requirements, but that is a
separate question: If the code does not do
what the programmer thought it did, then
any further testing or validation is both

meaningless and a large waste of time and
money (two items that are in short supply
to begin with). Developer-centric unit
testing is a great way to introduce basic
regression testing, create more modular-
ized code that is easier to maintain, and
ensure that new work does not break
existing work. Despite the effectiveness of
this technique in both improving design
and identifying and preventing defects
(aka bugs), 76 percent of companies in the
United States do not even try it [2].

Automation is a catchall category that
includes regular, unattended project builds,
including regression tests and push-button
convenience for day-to-day activities.
Regular builds ensure that the product can
be built to catch simple mistakes early and
easily, when fixing them is the cheapest.
When implemented properly, it is as if you
have an ever-vigilant guardian looking over
your shoulder, warning you as soon as
there is a problem. Incredibly, some 70
percent of projects in the United States do
not have any sort of daily build [2]. By the
time they discover a problem, it has metas-
tasized into a much larger and potentially
fatal problem.

We will briefly examine each of these
areas, with an in-depth look at unit testing
in particular. We will outline the important
ideas, synergies, and caveats for each of
these practices so your team can either
begin using them or improve your current
use of them.

Version Control
Everyone can agree that version control is
a best practice but even with it in place, is
it being used effectively? Ask yourself
these questions: Can you re-create your
software exactly as it existed on January 8?
When a bug is found that affects multiple
versions of your released software, can
your team fix it just once, and then apply
that fix to the different versions automati-
cally? Can a developer quickly back out of
a bad piece of code?

There is more to version control than
just keeping track of files. But before we

proceed, we need to define some simple
terminology: We use check-in to mean that
a programmer has submitted his or her
changes to the version control system. We
use checkout to refer to getting a personal
version of code from the version control
system into a local working area.

When a programmer checks in code, it
is now potentially available to the rest of
the team. As such, it is only polite to
ensure that this new code actually compiles
successfully; it should be accompanied by
unit tests (more on this later), and those
tests should pass. All the other passing
tests in the system should continue to pass
as well – if they suddenly fail, then you can
easily trace the failure to the new code that
was introduced.

It is far easier to track down these sort
of problems right at the point of creation
instead of days, weeks, or even months
later. To exploit this effect, you must allow
and encourage frequent check-ins of code
multiple times per day. It is not unusual to
see team members check-in code 10-20
times a day. It is unusual – and very dan-
gerous – to allow a programmer to go a
few days or a week or more without check-
ing in code.

Because check-ins occur so frequently,
these and other day-to-day operations
must be very fast and low ceremony. A
check-in or checkout of code should not
take more than five to 15 seconds in gen-
eral. If it takes an hour, people will not do
it, and you have lost the advantage.

Now some people get a little nervous
when they read this part. They fret that all
of this code is being dumped into the sys-
tem without being reviewed, tested by QA,
audited, or whatever else their methodolo-
gy or environment demands. They are
rightfully concerned that this code is not
yet ready to be part of a release.
Nonetheless, it must still be in the version
control system so that it is protected.

Most version control systems provide a
mechanism to differentiate ongoing devel-
opment changes from official release can-
didates. Some feature explicit promotion

© 2004 The Pragmatic Programmers, LLC. Portions of
this article adapted from “Pragmatic Unit Testing in Java
With JUnit,” by Andy Hunt and Dave Thomas (Volume
II of the Pragmatic Starter Kit), published by the
Pragmatic Bookshelf and Copyright © 2003, 2004 The
Pragmatic Programmers, LLC. Reprinted with permis-
sion.

Three Essential Tools for Stable Development

November 2004 www.stsc.hill.af.mil 23

commands to allow this. You can accom-
plish the same thing in other systems by
using tags (or version labels) to identify
stable release versions of source code as
opposed to code that is in progress.

Regardless of the mechanism, it must
be an easy operation to promote develop-
ment changes to an official release status.
On the other side of the coin, you need to
be able to back out changes and any disas-
trous new code when needed.

Finally, you need to be able to re-cre-
ate any product built at any previous point
in time. This ability to go back in time is
crucial for effective debugging and prob-
lem solving (just think of any developer
who starts a discussion with, “Well, it used
to work”).

Commercial and freely available ver-
sion control systems vary in complexity,
features, and ease of administration. But
one feature in particular is worth examin-
ing: whether it supports strict locking or
optimistic locking. In systems under strict
locking, only one person can edit a file at
a time. While that sounds like a good idea,
it turns out to be unduly restrictive in
practice. We favor the Concurrent
Version System <www.cvshome.org>
described in [3].

You may find you can increase paral-
lelism and efficiency in your team by using
a system that features optimistic locking.
In these systems, multiple people can edit
the same source code file simultaneously.
The system uses conflict-resolution algo-
rithms to merge the disparate changes
together in a sensible manner. Ninety-nine
percent of the time it works perfectly with-
out intervention. Occasionally, however,
there is a conflict that must be addressed
manually. At no point is anyone’s work in
danger of being lost, and it ends up being
much more efficient to coordinate just
these few conflicts by hand instead of hav-
ing everyone coordinate every change with
the rest of the team.

Unit Testing
When a developer makes a change to the
code on your project, what feedback is
available? Does the developer have any
way of knowing if the new code broke
anything else? Better still, how do you know
if any developer has broken anything
today? A system of automated unit tests
will give you this information in real-time.

Programming languages are notorious
for doing exactly what programmers say,
not what they mean. Like a petulant child
that takes your expressions completely lit-
erally, the computer follows our instruc-
tions to the letter, with no regard at all to
our intent. Technology has yet to produce

the compiler that implements with do what
I mean, not what I say.

So in keeping with the idea of finding
and fixing problems as soon as they occur,
you want programmers to use unit tests (or
checked examples) to verify the computer’s
literal interpretation of their commands. It
is really no different from following
through with a subordinate to verify that a
delegated task was performed – except
that instead of just checking once, auto-
mated unit tests will check and recheck
every time any code is changed.

There are some requirements to using
this style of development, however:
• The code base must be decoupled

enough to allow testing. When code is
tightly coupled, it is very difficult to
test individual pieces in isolation, and
harder to devise unit tests that exercise
specific areas of functionality. Well-
written code, on the other hand, is easy
to test. If your team finds that the code
is difficult to test, then take that as a
warning sign that the code is in serious
trouble to begin with.

• Only check-in tested code. As we men-
tioned above, checking-in foists a pro-
grammer’s code onto the rest of the
team. Once it is available to everyone,
then the whole team will begin to rely
on it. Because of this reliance, all code
that is checked in must pass its own
tests.

• In addition to passing its own tests, the
programmer checking in the code must
ensure nothing else breaks, either. This
simple regression helps prevent that
frustrating feeling of one step forward, two
steps back that becomes commonplace
when code fixes cause collateral dam-
age to other parts of the code base.
Usually these bugs then require fixes,
which in turn cause more damage, and
so on. The discipline of keeping all the
tests running all the time prevents that
particular death-spiral.

• There should be at least as much test
code as production code. You might
think that is excessive, but it is really
just a question of where the value of
the system resides. We firmly believe
the code that implements the system is
not where the value of your intellectu-
al property lies. Code can be rewritten
and replaced, and the new code (even
an entirely new system) can be verified
against the existing tests. Now the
most precise specification of the sys-
tem is in executable form – the unit
tests. The learning and experience that
goes into creating the unit tests is
invaluable, and the tests themselves are
the best expression we have of that

knowledge.
We will look at implementing unit tests

(aka checked examples) in much greater
detail later in this article.

Automation
An old saying goes the cobbler’s children have
no shoes. This saying is particularly appro-
priate for our use of software tools during
software development. We see teams rou-
tinely waste time using manual procedures
that could easily be automated.

Everyone clamors for software devel-
opment to be more defined and repeat-
able. Well, the design and implementation of
software probably cannot be made repeat-
able any more than you could make the
process of making hit movies repeatable.
But the production of software is another
matter entirely.

The process of taking source code
files, bits of eXtensible Markup Language,
libraries, and other resources and produc-
ing an executable for the end user should
be precisely repeatable. Given the same
inputs, you want the same outputs, every
time, without excuses. In combination
with version control, you want to be able
to go back in time and reproduce that
same pile of bits that you would have pro-
duced on January 8 just as easily. That
comes in very handy should the
Department of Justice ask for it politely, or
a frustrated customer asks for it somewhat
less politely to work around some out-
standing bug.

The rule we try to adopt is that any
manual process that is repeated twice is
likely to be repeated a third time – or more
– so it needs to be encapsulated within a
shell script, batch file, piece of Java code,
Job Control Language, or whatever.

Unit tests, as well as functional and
acceptance tests, should be run automati-
cally as well as be part of the build process.
You will probably want to run the unit
tests (which should execute very quickly)
with every build; automatic functional and
acceptance tests might take longer and you
may only want to run those once a week,
or when convenient.

You see, not only does automation
make developer’s lives easier by providing
push-button convenience, it helps keep the
feedback coming by constantly checking
the state of the software. Automated
builds are constantly asking two questions:
Does the software build correctly? Do all
the tests still pass a basic regression? With
the computer performing these checks
regularly, developers do not have to.
Problems can be identified as soon as they
happen, and the appropriate developer or
team lead can be notified immediately of

Software Toolbox

24 CROSSTALK The Journal of Defense Software Engineering November 2004

the problem [4]. Problems can be fixed
quickly, before they have a chance to cause
any additional damage. That is the benefit
we want from automation.

Finally, consider how the build com-
municates to the development team and its
management. Does the team lead look at
the latest results in some log file and then
report status to management? Does not
that constitute a manual process? It is rela-
tively easy to set up visual display devices,
ranging from liquid crystal display screens
to bubbling lava-style lamps to the new
and popular Ambient Orb [4].

Synergy
These three practices interlock to provide a
genuine safety net for developers. Version
control is the foundation. Unit tests and
scripts for automation are under version
control, but version control needs automa-
tion to be effective. Unit testing needs both
version control and automation.

With the combination, developers can
better afford to take chances, experiment,
and find the best solutions. The Rule of
Three says that if you have not proposed
at least three solutions to a problem then
you have not thought about it hard
enough. With this set of practices in place,
developers can realistically try out a num-
ber of different solutions to a problem:
Version control will keep them separate,
and unit testing will help confirm the via-
bility of each solution. All this with plenty
of automated support, including continu-
ous, ongoing checks ensures that the team
does not wander too far off into the
woods. This is how modern, successful
software development is done.

Unit Testing With Your
Right-BICEP
You can strengthen your organization’s
testing skills by looking at six specific areas
of code that may need unit tests. These
areas are remembered easily using the
mnemonic Right-BICEP [5]:

Right Are the results right?
B Are all the boundary conditions cor-

rect?
I Can you check inverse relation-

ships?
C Can you cross-check results using

other means?
E Can you force error conditions to

happen?
P Are performance characteristics

within bounds?

Are the Results Right?
The first and most obvious area to test is

simply to see if the expected results are
right – to validate the results. These are
usually the easy tests, as they represent the
answer to the key question: If the code ran
correctly, how would I know? Here is an
example of how being forced to think
about testing helps developers code better:
If this question cannot be answered satis-
factorily, then writing the code – or the test
– may be a complete waste of time.

“But wait,” you cry out, “that does not
sound very agile! What if the requirements
are vague or incomplete? Does that mean
we can’t write code until all the require-
ments are firm?” No, it does not at all. If
the requirements are truly not yet known,
or not yet complete, you can always make
some assumptions as a stake in the ground.
They may not be correct from the user’s
point of view (or anyone else on the plan-
et), but they let the team continue to devel-
op. And, because you have written a test
based on your assumption, you have now
documented it – nothing is implicit.

Of course, you must then arrange for
feedback with users or sponsors to fine-
tune your assumptions. The definition of
correct may change over the lifetime of the
code in question, but at any point, you
should be able to prove that it is doing
what you think it ought.

Boundary Conditions
Identifying boundary conditions is one of
the most valuable parts of unit testing
because this is where most bugs generally
live – at the edges. Some conditions you
might want to think about include the fol-
lowing:
• Totally bogus or inconsistent input val-

ues such as a file name of
!*W:X\\{\&Gi/w$>$g/h\#WQ@.

• Badly formatted data such as an e-mail
address without a top-level domain
<fred@foobar>.

• Empty or missing values such as 0, 0.0,
“”, or null.

• Values far in excess of reasonable
expectations such as a person’s age of
10,000 years.

• Duplicates in lists that should not have
duplicates.

• Ordered lists that are not in order and
vice-versa. Try handing a pre-sorted list
to a sort algorithm, for instance, or
even a reverse-sorted list.

• Things that arrive out of order, or hap-
pen out of expected order such as try-
ing to print a document before logging
in, for instance.
An easy way to think of possible

boundary conditions is to remember the
acronym CORRECT. For each of these
items, consider whether or not similar con-

ditions may exist in your method that you
want to test, and what might happen if
these conditions were violated [4]:
• Conformance. Does the value con-

form to an expected format?
• Ordering. Is the set of values ordered

or unordered as appropriate?
• Range. Is the value within reasonable

minimum and maximum values?
• Reference. Does the code reference

anything external that is not under
direct control of the code itself ?

• Existence. Does the value exist (e.g., is
non-null, non-zero, present in a set,
etc.)?

• Cardinality. Are there exactly enough
values?

• Time (absolute and relative). Is
everything happening in order? At the
right time? In time?

Check Inverse Relationships
Some methods can be checked by applying
their logical inverse. For instance develop-
ers might check a method that calculates a
square root by squaring the result, and test-
ing that it is tolerably close to the original
number. They might also check that some
data was successfully inserted into a data-
base by then searching for it, and so on.

Be cautious when the same person has
written both the original routine and its
inverse, as some bugs might be masked by
a common error in both routines. Where
possible, use a different source for the
inverse test. In the square root example,
we might use regular multiplication to test
our method. For the database search, we
will probably use a vendor-provided search
routine to test our insertion.

Cross-Check Using Other Means
Developers might also be able to cross-
check results of their method using differ-
ent means. Usually there is more than one
way to calculate some quantity; we might
pick one algorithm over the others because
it performs better or has other desirable
characteristics. That is the one we will use
in production, but we can use one of the
other versions to cross-check our results in
the test system. This technique is especial-
ly helpful when there is a proven, known
way of accomplishing the task that hap-
pens to be too slow or too inflexible to use
in production code.

Another way of looking at this is to use
different pieces of data from the code
itself to make sure they all add up. For
instance, suppose you had some sort of
system that automated a lending library. In
this system, the number of copies of a
particular book should always balance.
That is, the number of copies that are

Three Essential Tools for Stable Development

November 2004 www.stsc.hill.af.mil 25

checked out plus the number of copies sit-
ting on the shelves should always equal the
total number of copies in the collection.
These are separate pieces of data, and may
even be managed by different pieces of
code, but they still have to agree and so can
be used to cross-check one another.

Force Error Conditions
In the real world, errors happen. Disks fill
up, network lines drop, e-mail goes into a
black hole, and programs crash. You
should be able to test that code handles all
of these real-world problems by forcing
errors to occur.

That is easy enough to do with invalid
parameters and the like, but to simulate
specific network errors – without unplug-
ging any cables – takes some special tech-
niques, including using mock objects.

In movie and television production,
crews will often use stand-ins, or doubles,
for the real actors. In particular, while the
crews are setting up the lights and camera
angles, they will use lighting doubles: inex-
pensive, unimportant people who are
about the same height and complexion as
the very expensive, important actors who
remain safely lounging in their luxurious
trailers.

The crew then tests their setup with
the lighting doubles, measuring the dis-
tance from the camera to the stand-in’s
nose, adjusting the lighting until there are
no unwanted shadows, and so on, while
the obedient stand-in just stands there and
does not whine or complain about lacking
motivation for their character in this scene.

What you can do in unit testing is sim-
ilar to the use of lighting doubles in the
movies: Use a cheap stand-in that is kind
of close to the real thing, at least superfi-
cially, but that will be easier to work with
for your purposes.

Performance Characteristics
One area that might prove beneficial to
examine is performance characteristics –
not performance itself, but trends as input
sizes grow, as problems become more
complex, and so on. Why? We have all
experienced applications that work fine for
a year or so, but suddenly and inexplicably
slow to a crawl. Often, this is the result of
a silly error or oversight: A database
administrator changed the indexing struc-
ture in the database, or a developer typed
an extra zero into a loop counter.

What we would like to achieve is a
quick regression test of performance
characteristics. We want to do this regular-
ly, every day at least, so that if we have
inadvertently introduced a performance
problem we will know about it sooner

rather than later (because the nearer in
time you are to the change that introduced
the problem, the easier it is to work
through the list of things that may have
caused that problem).

So, to avoid shipping software with
unsuspected performance problems,
teams should consider writing some rough
tests just to make sure that the perfor-
mance curve remains stable. For instance,
suppose the team is working on a compo-
nent that lets users browse the Web from
within their application. Part of the
requirement is to filter out access to Web
sites that we wish to block. The code
works fine with a few dozen sample sites,
but will it work as well with 10,000?
100,000? We can write a unit test to find
out.

This gives us some assurance that we
are still meeting performance targets. But
because this one test takes six to seven
seconds to run, we may not want to run it
every time. As long as we run it (say)
nightly, we will quickly be alerted to any
problems we may introduce while there is
still time to fix them.

Getting Started
All of the software tools mentioned in this
article are freely available on the Web. To
get started using these practices effectively,
we recommend following this sequence:
1. Get everything into version control.
2. Arrange for automatic, daily builds.

Increase these to multiple times per day
or continuously as soon as the process
begins to work smoothly.

3. Start writing unit tests for new code.

Where needed, add some unit tests to
existing code (but be pragmatic about
it; only add tests if they will really help,
not just for the sake of completeness).

4. Add the unit tests to the scheduled
builds.
You can begin right away. Fire up that

Web browser and start downloading some
software if you do not already have it.
These ideas will not fix all the problems
on your project, of course, but they will
provide your project with a firm footing
so you can concentrate on the truly diffi-
cult problems.u

References
1. Zeichick, Alan. “Debuggers, Source

Control Keys to Quality.” Software
Development Times 1 Mar. 2002.

2. Cusumano, Michael, et al. “A Global
Survey of Software Development
Practices.” Paper 178. MIT Sloan
School of Management, June 2003.

3. Thomas, Dave, and Andy Hunt.
Pragmatic Version Control With CVS.
Raleigh, NC: Pragmatic Bookshelf,
2003 <www.PragmaticBookshelf.
com>.

4. Clark, Mike. Pragmatic Project
Automation. Raleigh, NC: Pragmatic
Bookshelf, 2004 <www.Pragmatic
Bookshelf.com>.

5. Hunt, Andy, and Dave Thomas.
Pragmatic Unit Testing in Java With
JUnit. Raleigh, NC: Pragmatic
Bookshelf, 2003. (Also available in a
C# version) <www.PragmaticBook
shelf.com>.

About the Authors

Andy Hunt is an avid
woodworker and musi-
cian, but curiously, he is
more in demand as a
consultant. He has work-
ed in telecommunica-

tions, banking, financial services, and
utilities, as well as more exotic fields such
as medical imaging and graphic arts.
Hunt is author of many articles,
columns and books, and co-author of
“The Pragmatic Programmer.”

The Pragmatic Programmers, LLC
9650 Strickland RD
STE 103-255
Raleigh, NC 27615
Phone: (800) 699-7764
E-mail: andy@pragmatic

programmer.com

Dave Thomas likes to
fly single-engine air-
planes and pays for his
habit by finding elegant
solutions to difficult
problems, consulting in

areas as diverse as aerospace, banking,
financial services, telecommunications,
travel and transport, and the Internet.
Thomas is author of many articles,
columns and books, and co-author of
“The Pragmatic Programmer.”

The Pragmatic Programmers, LLC
P.O. Box 293325
Lewisville,TX 75029
Phone: (972) 539-7832
E-mail: dave@pragmatic

programmer.com

